

Controlled Potential Nitriding of stainless steels

NITREG®-S is a process in which stainless steel may be nitrided, with complete control over the formation of nitrided layers.

Piston segments

Material: AISI 440B

NANO-S[™] is a surface hardening process that improves the wear and galling resistance of stainless steel components **without affecting the inherent corrosion resistance**. The process diffuses nitrogen and/or carbon into the surface of the steel, creating a new phase structure, the S-Phase, which provides extremely high hardness.

Ball Valve Refinery application

Frictional wear caused by metal to metal contact is significantly reduced with NANO-S[™].

Petroleum application

NANO-S[™] reduces

through during high

premature wearing of

injector hole caused by abrasive particles flowing

Injector

10 REASONS FOR SWITCHING TO NITREX

- 1. Advanced technology
- 2. Improved service life
- 3. Improved wear and corrosion resistance
 - . Repeatable results
- 5. Optimal properties
- 6. Increased production
- 7. Lower manufacturing costs
- 8. Controlled processing
- 9. Metallurgical laboratory services
- 10. Environment friendly technology

AMS 2759/10 & 2759/12 Compliant

www.nitrexheattreat.com

NITREG® TECHNOLOGY

Controlled Potential Nitriding

Controlled Potential Nitrocarburizing

Controlled Potential Nitriding or Nitrocarburizing and Post Oxidation

Valve springs mass produced by major US car manufacturer Result: Nitreg® nitriding increased fatigue life by 35%

Exhaust valve Material: X45CrSi9-3 Result: Nitreg® selected because nitrided layer retained high wear resistance in service.

Transmission gear for light trucks mass produced by major US truck manufacturer Material: 42CrMo4

Engine injectors Material: X40CrMoV51 Result: Nitreg® produced deep diffusion case with zero white layer For applications requiring a high ε– content, excellent wear resistance and enhanced corrosion resistance

Appearance of Brake Pistons after 400 hours of salt-spray

APPLICATION	Automotive Seat Rails	Throttle Valves
Steel Grade	1006	1017
Microstructure		E.
1st Corrosion Spot in Salt- Spray	339 hours	483 hours